Table 1. Lactic dehydrogenase activity and isoenzyme distribution in muscle of mice bearing a mammary carcinoma and of controls

Weeks after	Total LD	Isoenzyme (%)				
transplantation	(IU/g)	LD 1	LD 2	LD 3	LD 4	LD 5
0	443 ± 47	11 ± 1.2	12±1.6	15 ± 1.8	22 ± 2.1	40 ± 2.1
1	440 ± 30	6 ± 1.6	12 ± 1.6	14 ± 0.7	19 ± 1.9	40 ± 2.8
2	459 ± 28	5 ± 0.75	9 ± 1.04	14 ± 0.5	19 ± 1.1	53 ± 2.4
3	588 ± 48	5 ± 0.55	8 ± 0.85	11 ± 0.9	20 ± 1.2	56 ± 2.7
4	441 ± 42	0	5 ± 0.5	6 ± 0.7	29 ± 0.9	60 ± 1.5
5	402 ± 43	0	6 ± 0.2	8 ± 0.2	26 ± 1.2	60 ± 2.3
6	340 ± 49	0	0	5 ± 0.5	33 ± 0.67	62 ± 3.9
2 weeks after resection	on					
of a 4-week tumor	394 <u>+</u> 44	1 ± 0.6	6 ± 0.7	10 ± 1.5	28 ± 1.9	55 ± 2.5

Table 2. Lactic dehydrogenase activity and isoenzyme distribution in the mammary carcinoma

Weeks of growth of tumor	Total LD (IU/g)	Isoenzyme LD 1	(%) LD 2	LD 3	LD 4	LD 5
3	245 ± 28.6	0	0	5±0.5	36 ± 2.1	59±2.7
4	213 ± 27.1	0	0	9 ± 0.3	25 ± 1.1	66 ± 1.8
5	139 ± 18	0	0	6 ± 0.2	31 ± 0.2	63 ± 1.5
6	180 ± 27.5	0	0	6 ± 0.3	34 ± 1.5	60 ± 1.9

- 1 This study was supported by a grant from the Minnesota Masonic Memorial Cancer Research Fund and, in part, by Grant No.16-P-5681015-17 from the Rehabilitation Services Administration, U.S. Dept. of Health, Education and Welfare.
- 2 G. Pfleiderer and E.D. Wachsmuth, Biochem. Z. 334, 185 (1961).
- 3 R. Richterich and A. Burger, Enzymol. Biol. Clin. 3, 65 (1963).
- 4 R.D. Goldman, N.O. Kaplan and T.C. Hall, Cancer Res. 24, 389 (1964).
- 5 H. Poznanska-Linde, J.H. Wilkinson and W.A. Withycombe, Nature 209, 727 (1966).
- 6 R. Hilf, W.D. Rector and R.A. Orlando, Cancer 37, 1825 (1976).
- 7 F. Schapira, Adv. Cancer Res. 18, 77 (1973).
- 8 N.Q. Hanson and E.F. Freier, Clin. Chem. 20, 769 (1974).
- 9 Lactic Dehydrogenase Isoenzyme Assay, Manual No. 55339, Beckman Instruments, Inc. 1973.

- 10 A.L. Latner, D.M. Turner and S.A. Way, Lancet 2, 814 (1966).
- 11 R. Yasin and F. Bergel, Eur. J. Cancer 1, 203 (1965).
- 12 E. Langvad, Int. J. Cancer 3, 17 (1968).
- 13 R. Woollams, P.J. Barrati, R.L. Orwell and D.W. Piper, Digestion 14, 20 (1976).
- 14 R. Tayler, V.H. Cumberland and D.W. Piper, Gut 18, 45 (1977).
- 15 P. Carda-Abella, S. Perez-Cuadrado and J. Mate-Jimenez, Cancer 42, 490 (1978).
- 16 E.V. Parina, S.A. Mykhailova and V.S. Antonov, Biokhimia 43, 706 (1978).
- 17 K. Lundholm, S. Edstrom, L. Ekman, I. Karlberg, A.C. Bylund and T. Schersten, Cancer 42, 453 (1978).
- 18 C.P. Holroyde, R.S. Axelrod, C.L. Skutches, A.C. Haff, P. Paul and G.A. Reichard, Cancer Res. 39, 4900 (1979).

Estimation of nonspecific lectin-mediated staining of glutaraldehyde-fixed cells

N. Gilboa-Garber and L. Mizrahi

Department of Life Sciences, Bar-Ilan University, Ramat-Gan (Israel), 17 March 1980

Summary. Lectin-mediated stainings are widely used for the visualization of carbohydrate-carrying cellular components using the electron microscope. The use of glutarladehyde-fixed cells for these stainings introduces the possibility of low nonspecific lectin-trapping by the glutaraldehyde which coats the cells. This trapping was estimated by means of peroxidase-binding to human leukocytes, Tetrahymena pyriformis and Escherichia coli cells and was shown to be prevented by rinsing the glutaraldehyde-fixed cells in an amino acid solution before exposure to the lectin.

The use of concanavalin A-mediated peroxidase-binding to cells for ultrastructural cytochemistry was first described by Bernhard and Avrameas¹. The method is based on the specificity of Con A for α -D-glucopyranosyl, α -D-mannopyranosyl or β -D-fructofuranosyl residues^{1,2} and on its ability to react at one of its active sites with a cell-bound sugar and at the other active site with the sugar of horseradish peroxidase. The bound peroxidase is revealed by the diaminobenzidine (DAB) method of Graham and Karnovsky³. In the controls, 0.2 M α -methyl mannoside is added to

the Con A and peroxidase solutions¹. The sugar addition inhibits the specific binding of Con A to the cells and the peroxidase-binding to nonspecifically bound Con A. It does not prevent nonspecific Con A-binding to the cells. While nonspecific Con A trapping is negligible when untreated cells are used, glutaraldehydefixed cells^{1,4,5} may trap some Con A due to remaining free aldehyde groups^{6,7}. This trapped lectin will then be stained similarly to the specifically bound lectin and will not be detected in those controls which contain the free sugar in the peroxidase solution¹.

Con A-mediated peroxidase-binding to human leukocytes, tetrahymenas and *E. coli* cells as revealed by the peroxidase elution from the cells by D-mannose and examination of its activity according to Huet and Bernadac¹¹

Treatment			Peroxidas		
Glutar- aldehyde fixation	Glycine treatment	D-mannose addition	Leuko- cytes	Tetra- hymenas	E. coli
_	_	_	80.0	119.0	2.8
_	_	+	0	1.5	1.7
+	_	_	94.0	136.1	14.0
+	_	+	11.2	14.0	11.2
+	+	_	81.6	118.1	1.9
+	+	+	0	3	1.7

^{*} Peroxidase activity is expressed as nmoles/ml/min dianisidine oxidized by the peroxidase which was eluted to the supernatant by addition of 0.2 M D-mannose to the cells. Values represent means of 3 experimental results.

Similar methods are also used for the ultrastructural visualization of cell-coat components by means of other lectins⁸, with peroxidase, ferritin^{9,10} or colloidal gold^{11,12}.

The aim of the present study was to examine the extent of the nonspecific lectin trapping to glutaraldehyde-fixed cells as compared to that of glutaraldehyde-fixed cells which were rinsed in an amino acid solution after the fixation. The lectin-binding was assessed by determination of Con A-mediated peroxidase-binding¹³. The cells used were human peripheral leukocytes and *Tetrahymena pyriformis*, both known to contain Con A-binding receptors¹⁴, as well as bacteria which lack such receptors.

Materials and methods. Leukocytes were isolated from healthy human bloods drawn into heparinized tubes¹⁵ and washed 3 times in phosphate buffered saline (PBS). Tetrahymena pyriformis GL cells were cultured aseptically in 2% proteose peptone +0.1% yeast extract at 28-29 °C for 2 days without shaking. After 3 washings, the tetrahymenas were treated with 0.1 M Na fluoride (to arrest their vigorous movement) and again washed 3 times in PBS. Escherichia coli cells were grown on nutrient broth (Difco) at 23 °C for 20 h and washed 3 times in PBS.

The washed cell suspensions were divided into 3 equal parts. After sedimentation by centrifugation, the cells in the 1st sample were resuspended in 1 ml of either PBS or Cacodylate-HCl buffered saline and the other 2 samples were fixed in 1 ml of 2% (v/v) glutaraldehyde solution in the same buffered saline. After 1 h the cells were washed in the respective buffered saline and 1 of the 2 glutaraldehyde-treated cell samples was suspended in 1 ml of 0.2 M glycine solution. After 30 min in the glycine solution, these cells were again washed in the buffered saline. The 3 cell samples were then equally divided into 2 tubes (to make 3

pairs of tubes). In each pair 0.3 ml of saline was added to one tube and 0.3 ml of 0.2 M D-mannose solution to the other tube. Then 0.3 ml of Con A solution (1 mg/ml, purchased from Miles-Yeda, Ltd, Rehovot, Israel) was added to all the tubes. After 1 h the cells were washed 3 times in PBS and exposed to 50 µg of horseradish peroxidase (from Sigma, type II) in 1 ml of PBS for 1 h. After 5 washings in PBS, the specifically bound peroxidase was eluted from the cells by 0.8 ml of a 0.2 M D-mannose solution. The supernatant fluid (0.5 ml) obtained after 30 min at room temperature was examined for peroxidase activity¹³ by the addition of 2 ml of dianisidine solution (containing 0.1 mg 3,3'-dimethoxybenzidine 2 HCl in 1 ml of 0.12 M phosphate buffer at pH 7) and 0.1 ml of 0.005% H_2O_2 . The reaction was terminated after 1 min by 0.1 ml of 6 N HCl and absorbance at 420 nm was recorded.

Results and discussion. The table demonstrates peroxidase elution from Con A-bound to unfixed, as compared to glutaraldehyde-fixed cells. The results presented in this table indicate that glutaraldehyde fixation of leukocytes and tetrahymenas leads to additional Con A-binding which is not prevented by 0.2 M D-mannose in contrast to the specific Con A-binding to unfixed cells. After glycinetreatment of the glutaraldehyde-fixed cells, Con A-binding is similar to that obtained with the unfixed cells and is abolished by D-mannose. Glutaraldehyde-fixed bacteria also trap Con A, in contrast to unfixed bacteria, which do not exhibit any significant Con A-binding. The extent of this nonspecific binding is similar to the additional binding observed with the glutaraldehyde-fixed leukocytes and tetrahymenas and is also resistant to D-mannose addition. Essentially the same results were obtained whether phosphate or cacodylate was used for buffering. The described results indicate that the use of glutaraldehyde-fixed cells without neutralization with an amino acid solution for the electron microscope stainings^{1,5} may suffer from some nonspecific staining due to Con A trapping by the glutaraldehyde. Therefore, some of the differences described between the findings obtained when Con A was added to fixed, as compared to unfixed cells, may also be due to such nonspecific binding. The controls in which D-mannose or methyl a-D-mannoside are added to the Con A and peroxidase solutions1 do not reveal this binding, since the bound Con A cannot bind the peroxidase and be stained in the presence of the sugar. If peroxidase without sugar is added, the nonspecific Con A trapping may be revealed. A weak nonspecific staining with peroxidase in such controls, or in controls treated with peroxidase without Con A, was described⁴ and could probably be prevented by neutralization of the free aldehyde groups by glycine or NH₄Cl^{6,7}. We therefore suggest introducing the herein suggested correction to these very important cytochemical methods for localization of lectin binding sites on glutaraldehyde-fixed

¹ W. Bernhard and S. Avrameas, Exp. Cell Res. 64, 232 (1971).

I.J. Goldstein, L.L. So, Y. Young and Q.C.I. Callies, J. Immunol. 103, 695 (1969).

³ R.C. Graham and M. Karnovsky, J. Histochem. Cytochem. 14, 291 (1966).

⁴ E. Wyroba, Ann. med. Sect. Pol. Acad. Sci. 20, 143 (1975).

⁵ W. De Souza, M.M. Bunn and J. Angluster, J. Protozool. 23, 329 (1976)

⁶ S.M. Brown and J.P. Revel, J. Cell Biol. 68, 629 (1976).

⁷ I. Nir and M.O. Hall, Exp. Eye Res. 29, 181 (1979).

⁸ C.H. Huet and J. Garrido, Exp. Cell Res. 75, 523 (1972).

⁹ I. Virtanen and J. Wartiovaara, J. Cell Sci. 22, 335 (1976).

P.A.M. Eagles, L.N. Johnson and C. Van Horn, J. Cell Sci. 19, 33 (1975).

¹¹ M. Horisberger and J. Rosset, J. Histochem. Cytochem. 25, 295 (1977).

¹² G. Csaba and B. Madarasz, Experientia 35, 1181 (1979).

¹³ C. H. Huet and A. Bernadac, Exp. Cell Res. 89, 429 (1974).

¹⁴ A. Frisch, W. Bessler, H.J. Lipps and D. Ammermann, J. Protozool. 23, 427 (1976).

¹⁵ D. Nelken, N. Gilboa-Garber and J. Gurevitch, J. clin. Path. 13, 266 (1960).